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A B S T R A C T

The paper investigates the nature and impact of green technological change. We focus on the search and impact
spaces of green inventions: we explore the knowledge recombination processes leading to the generation of
inventions and their impact on subsequent technological developments. Using a large sample of patents, filed
during the period 1980-2012, we employ established patent indicators to capture the complexity, novelty and
impact of the invention process. Technological heterogeneity is controlled for by comparing green and non-green
technologies within narrow technological domains. We find that green technologies are more complex and
appear to be more novel than non-green technologies. In addition, they have a larger and more pervasive impact
on subsequent inventions. The larger spillovers of green technologies are explained only partially by novelty and
complexity.

1. Introduction

The transition to a greener economy revolves, essentially, around
the role of technological change (see, among others, Smith, 2008;
Pearson and Foxon, 2012; Barbieri et al., 2016). To provide new evi-
dence on the rate and direction of “green” technological change, we
investigate a recurrent issue in the economics of innovation related to
“the ways in which technological change is generated and propagated”
(Griliches, 1957, p. 501). To address this requires a combined per-
spective on the sources and impacts of technological evolution
(Rosenberg, 1976; Nelson and Winter, 1982), that is, investigation of
both the search and impact spaces. The former refers to the origins of an
invention and the conditions that induce a new technology
(Arthur, 2007). The latter refers to the mechanisms underlying diffu-
sion of the invention and the potential benefits of that process
(Rosenberg, 1982; Rogers, 1983).

The paper builds on the proposition that technological change is “a
cumulative process, whereby each innovation builds on the body of
knowledge that preceded it, and forms in turn a foundation for sub-
sequent advances” (Trajtenberg et al., 1997, p. 20). Studies examining
the characteristics of technological change employ the following non-
exclusive and complementary perspectives. An ‘ex-ante’ (e.g.,
Verhoeven et al., 2016) or ‘backward-looking’ (Trajtenberg et al., 1997)

approach, which characterizes inventions in terms of their nature by
focusing on the knowledge recombination processes leading to the in-
vention (e.g., Schumpeter, 1934; Fleming, 2001; Carnabuci and
Operti, 2013); and/or an ‘ex-post’ or ‘forward-looking’ approach, which
focuses on the impact of the invention on subsequent inventive activ-
ities (Ahuja and Lampert, 2001; Schoenmakers and Duysters, 2010).

Combining the ex-ante and ex-post perspectives, first, we compare
green and non-green technologies across various knowledge dimensions
and, second, we link the search and impact spaces, and examine whe-
ther the characteristics of the knowledge recombination influence the
impact of technologies on subsequent developments. In the case of the
search space, we consider technological complexity and novelty.
Complexity reflects the variety of knowledge sources or the number of
technological components. Novelty refers to the uniqueness of the re-
combination process at the root of the new artefact. Finally, the impact
on subsequent technologies is investigated by analysing green and non-
green technology spillovers and pervasiveness. We compare green and
non-green inventions along these dimensions using various well-es-
tablished patent indicators (e.g., Squicciarini et al., 2013).

The paper makes several contributions. First, we contribute to the
literature on environmental innovations, which includes studies pro-
viding insights and arguments related to the peculiarities of the green
knowledge base (e.g., De Marchi, 2012; Ghisetti et al., 2015), but does
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not directly test its distinctive features. In our analysis, we exploit es-
tablished indicators to systematically test the differences between green
and non-green technologies related to the knowledge recombination
process. We account for the fact that innovation activities involve dif-
ferent and interlinked phases (e.g., Kline and Rosenberg, 1986;
Tidd et al., 1997), ranging from concept to market exploitation. Also,
traits distinctive to environmental innovations can emerge in any parts
of the innovation chain. Failure to account for these aspects could
provide misleading implications. To ensure accurate insights, we in-
vestigate the “upstream” phase, that is, the inventive process related to
green technological development.

More importantly, our analysis contributes to a strand of literature
that focuses on the ex-post impact of green technologies (Popp and
Newell, 2012; Dechezleprêtre et al., 2017). These studies focus on the
knowledge externalities that arise from the generation of green and
non-green technologies. They develop on the following argument: R&D
policy should be directed towards green technologies if they exhibit
more knowledge spillovers compared to ‘dirty’ ones. In light of the
crowding out mechanism which takes away resources from other pro-
ductive sectors, green R&D policies are particularly desirable if clean
technologies generate greater spillovers than the technologies being
displaced by policy actions. Adopting the same focus on knowledge
externalities, our analysis extends the available evidence on the ex-post
impact of green technologies. Notably, we scrutinize whether the ex-
ante characteristics of knowledge recombination may explain the im-
pact of green inventions on subsequent technological developments.
First, the novelty of the technologies, a main feature of technological
emergence (Rotolo et al., 2015), might lead to potentially larger spil-
lovers to subsequent technologies (Haupt et al., 2007; Popp and
Newell, 2012; Dechezleprêtre et al., 2017). Similarly, technologies that
result from the broad and diverse combination of technological
knowledge may have larger spilllovers (Lerner, 1994;
Schoenmakers and Duysters, 2010). We examine directly the effect that
novelty and complexity might exert on the spillover potential of green
technologies, to produce fine-grained evidence of which characteristics,
if any, contribute to the larger impact of environmentally-sound in-
ventions on subsequent developments. Compared to the existing works,
we offer some empirical advancements. We focus on the whole spec-
trum of green technologies rather than a few selected technological
fields, to extend analysis of the rationale for policy interventions in
favour of environmentally-friendly innovations. We control for the
idiosyncratic features of each technological field considered, which
allows us to mimic the matching between green and “similar” (i.e., in
the same narrow technological field) non-green patents. This approach
is aimed at netting out the confounding factors which can arise when
comparing very different technologies.

The empirical analysis, which is based on the wealth of information
provided in the patents filed over the period 1980-2012, reveals that
green and non-green technologies differ across all the dimensions in-
vestigated, although to different extents. First, green patents are more
complex. Second, green technologies appear to be more novel than their
non-green counterparts. Third, our results show that green inventions
have a larger and more pervasive impact on subsequent developments.
Fourth, when controlling for ex-ante characteristics, we show that the
green orientation of an invention remains an important driver of larger
spillovers, and that complexity and novelty contribute to explaining
only a part of the larger knowledge externalities. While our results
suggest that spillover potential of green technologies is strong, they also
speak in favour of the implementation of green R&D subsidies, which
target especially green technologies that are complex and novel.

The paper is structured as follow. Section 2 reviews the relevant
literature and formulates the research questions. Section 3 identifies
appropriate patent-based indicators for the empirical analysis con-
ducted in Section 4. Section 5 presents the results and Section 6 con-
cludes.

2. Literature review

2.1. Ex-ante perspective: knowledge recombination processes in green
inventions

Inventive activity is the outcome of a knowledge recombination
process (Schumpeter, 1934; Weitzman, 1998; Arthur, 2007). Recent
developments related to invention theory suggest that the characteristics
of the search space influence the results of knowledge recombination.
The number of components and the strength of their interdependence,
that is, their complexity, has been shown to affect the outcome of in-
ventive activities (Fleming and Sorenson, 2001). In addition, distant
search, that is, unprecedented recombination of technological compo-
nents, influences the degree of novelty of the invention (Fleming, 2001).

A recent strand of work on the determinants of environmental in-
novation investigates the knowledge capabilities required by firms to
introduce environmental innovations. While these studies do not test
directly for features pertaining specifically to the green technology
search space, they provide insights into the complexity and novelty of
environmental technologies. In relation to the complexity of green
compared to non-green technologies, previous work shows that en-
vironmental technologies encompass a broader range of objectives and
knowledge inputs. De Marchi (2012) argues that the development of
products that enable decreased environmental impact is a complex
activity that requires diverse knowledge inputs and competences far
from the traditional industry knowledge base. The higher complexity of
green technologies is demonstrated by the multi-purpose and systemic
nature of environmental innovations (Ghisetti et al., 2015). Environ-
mental technologies are expected to satisfy different and joint objec-
tives, related to production efficiency and product quality, dictated, for
instance, by standards (Florida, 1996; Oltra and Saint Jean, 2005). At
the same time, their development encompasses several dimensions in-
cluding design, user-involvement, product-service delivery – including
new products, their related services, the supporting network and in-
frastructure (e.g., Mont, 2002) – and institutional requirements related
to, for example, the regulatory framework (Carrillo-Hermosilla et al.,
2010; Mazzanti and Rizzo, 2017).

Another interesting feature of green technologies is the extent to
which they embody new and different recombinations of knowledge
compared to the previous technologies, that is, the extent of their no-
velty. Environmental innovations are described as representing a
technological frontier (Cainelli et al., 2015) where the economic actors
have relatively scarce experience (Porter and van der Linde, 1995).
Environmental innovations are expected to imply radical change due to
the absence of established environmental best practice and technolo-
gical trajectories. In addition, they are characterized by technological
uncertainty and require skills, which, often, are outside the firm's
knowledge domain (De Marchi, 2012). In similar vein,
Horbach et al. (2013) note that environmental innovations generally
require firms to master new knowledge, linked to alternative produc-
tion processes, and inputs that generally are associated to relatively
new technological solutions. Acknowledging the diversity of environ-
mental innovations (i.e., their different objectives), Marzucchi and
Montresor (2017) suggest that efficiency-related environmental tech-
nologies exhibit important elements of novelty - for instance, industrial
design and engineering mechanisms - making them reliant on analytical
knowledge inputs from scientific partners. The greater extent to which
green innovations require new combinations of knowledge, resonates
with evidence on the human capital and skills content of green jobs,
highlighted by Consoli et al. (2016). These authors find that green jobs
are characterized by greater intensity of non-routine skills, and link this
finding to boundary fluctuations and the constant reconfiguration of
green occupations that are associated with the early stages of the en-
vironmental technologies life cycle.

In our analysis we put the propositions related to the higher com-
plexity and novelty of green technologies to direct test. Investigating
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these ex-ante characteristics might reveal some distinctive features of
green technologies which could result in particular difficulties and
consequent strategies associated to the knowledge recombination pro-
cess. To pursue complex and novel knowledge recombination requires
non-local and exploratory search, for instance, in the form of boundary
spanning (Rosenkopf and Nerkar, 2001) and cross-fertilization activ-
ities (Rosenkopf and Almeida, 2003; Harryson et al., 2008).

Based on the above premises, we can formulate the following re-
search questions.

RQ1. Do green technologies represent more complex recombina-
tions of technological knowledge compared to their non-green
counterparts?
RQ2. Do green technologies entail more novel recombinations of
technological knowledge compared to their non-green counterparts?

2.2. Ex-post perspective: impacts of green inventions on subsequent
technological developments

The characterization of an invention, from an ex-post perspective, is
related to the capacity to trigger future technological developments and
open up a range of new technological opportunities (Schoenmakers and
Duysters, 2010). While the former refers to the extent to which an in-
vention is considered a source of knowledge for subsequent technolo-
gies (Griliches, 1992; Jaffe et al., 1993), the latter is closer to the
concept of pervasiveness and captures the variety of fields affected by
the invention (Helpman and Trajtenberg, 1994). These characteristics
are associated, frequently, to General Purpose Technologies (GPTs)
which are distinguished by their pervasiveness, continuous technical
advancements and wide diffusion (Bresnahan and Trajtenberg, 1995;
Hall and Trajtenberg, 2004).

Recent works address issues related to the association between the
green transition and previous industrial revolutions or technological
waves. These studies argue that green technologies, at an early stage,
exhibit GPT traits (Stern, 2011) and are expected to fulfil the roles
played in the past by the steam engine, electricity and Information and
Communication Technologies (ICTs) (Pearson and Foxon, 2012;
Perez, 2016). Low carbon technologies are thought to have widespread
potential use, to stimulate complementary innovations and to con-
tribute to productivity gains and economic benefits (Pearson and
Foxon, 2012). Ardito et al. (2016) claim that green technologies should
be considered GPTs, with potential for multiple applications and spil-
lovers in multiple sectors.

Similarly, studies of specific technological realms highlight that
green technologies are characterized by larger impacts on subsequent
technologies and greater levels of pervasiveness. For example,
Cecere et al. (2014) focus on environmental technologies that are based
on ICTs or software applications (e.g., ICTs used in the context of re-
newable energy and sustainable mobility) and provide evidence of high
levels of pervasiveness of green ICTs that rely on a wide variety of
knowledge sources and actors. Further insights emerge from studies
that assess the social value of investing (public funds) in green in-
novations. Popp and Newell (2012) find that patents in sustainable
energy domains are cited more often than other patents, and that their
forward citations stem, in particular, from a variety of other techno-
logical domains. The greater impact on subsequent technological ad-
vancements is confirmed by the empirical investigation conducted by
Dechezleprêtre et al. (2017) on clean (and dirty) technologies in two
fields: electricity and transport. Their findings reveal that clean tech-
nology patents are cited more than other technology patents.1

Despite recent advancements, there is no systematic understanding

of the impact and pervasiveness of green technologies. Extant studies
focus on specific domains and sectors of the green economy, but do not
investigate important fields such as production of green goods, air
pollution abatement and water management. Also, when comparing
green and non-green inventions, extant work (Popp and Newell, 2012;
Dechezleprêtre et al., 2017) does not control for the idiosyncratic fea-
tures of narrow technological domains. From an ex-post perspective,
our study fills these gaps by analysing all environmental-related tech-
nologies and taking account of the specificity of each domain (see
Section 4.2.1).

Our findings shed light not only on the specific features of the green
technologies impact space but also on the justification for policy in-
tervention. This is linked, inherently, to the well-known double ex-
ternality that characterizes green technology (e.g., Jaffe et al., 2003),
which is used by economists to justify implementation of environmental
regulations and actions to support green technological change (e.g.,
through R&D subsidies) (Popp, 2006; Acemoglu et al., 2012). By
looking at the presence of positive knowledge externalities, we provide
evidence on the need for public support to compensate for private un-
derinvestment in green technologies. In light of the possibility that
actions to support green technologies redirect innovation funding away
from other productive technological domains (Barbieri, 2016), policy
interventions are justified by the higher social returns from green
compared to non-green inventions.

Building on the above, we propose the following research question,
which focuses on the green (and non-green) invention impact space and
considers the potential for spillovers and pervasive impact:

RQ3. Do green technologies have a greater impact on subsequent
technological developments relative to their non-green counter-
parts?

2.3. The relation between ex-ante characteristics and the impact of green
inventions on subsequent technological developments

As already mentioned, the larger spillovers generated by green
technologies is a fundamental rationale for policy intervention. In order
to uncover the possible causes of these knowledge externalities, in what
follows we discuss how characteristics related to complexity and no-
velty may explain the higher spillovers effect of green technologies.

Although not focused directly on green technologies, some prior
studies point to the potential for larger spillovers from more complex
technologies. In general, high impact ideas frequently have their origins
in different, linked bodies of knowledge (Schilling and Green, 2011).
More specifically, diversified knowledge bases and the combination of
different technological domains into new artefacts generate more im-
pact on subsequent technologies (Battke et al., 2016). The available
evidence suggests that the technological breadth (Lerner, 1994) and
diversification of the knowledge base of a patent are associated to a
higher number of forward citations (Schoenmakers and
Duysters, 2010).2

In terms of the relation between novelty and spillovers, some studies
focus particularly on green technologies. Popp and Newell (2012) note
that the early stages or novelty of green technologies may in part ex-
plain their greater externalities. The reduced knowledge bases of green
technological applications may be associated to the higher probability
they will represent breakthroughs that will promote subsequent tech-
nological developments. The evidence in Dechezleprêtre et al. (2017)

1 In a set of ancillary regressions, they investigate the generality and origin-
ality of clean technologies and obtain contrasting results for the two sectors
examined.

2 Dechezleprêtre et al. (2017) provide evidence on whether originality con-
tributes to explaining the amount of spillovers. Conceptually, they link the
originality indicator to the newness of a technology. We use it to capture the
complexity of an invention, because of its focus on the diversification of the
knowledge sources, together with another indicator (scope) that focuses on the
technological breadth of the invention (see Section 3.1).
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suggests that the novelty associated to the emerging nature of green
technologies helps to explain their higher level of spillovers. Their ap-
proach is based on a comparison between green technologies and other
emerging fields such as Information Technology (IT), biotech, nano-
technologies and 3D. Although Haupt et al. (2007) do not focus on
green inventions, they stress that technologies at an early stage in their
development can be expected to be cited more since they constitute the
knowledge base for future developments.

In our analysis, we extend the available evidence by accounting for
the effect of both complexity and novelty on the knowledge ex-
ternalities of green technologies and show whether these two char-
acteristics contribute to larger knowledge spillovers. We capture com-
plexity and novelty with specific indicators at the level of the single
invention; we avoid cross-field comparison which would assume that all
patents in a given field are characterized by homogenous ex-ante fea-
tures.

Understanding whether the ex-ante characteristics related to the
invention affect its spillovers, is particularly important for policy im-
plementation. Whenever the ex-ante characteristics contribute to ex-
plaining part of the higher knowledge spillovers of green inventions,
public support to green R&D should target complex and novel green
technologies.

Based on the above, we can formulate the following research
question:

RQ4. To what extent do complexity and novelty explain the spil-
lovers effect from green technologies?

3. Identifying inventions using patent data

To address our research questions, we conduct an empirical analysis
based on patent data.3 Patents provide three main types of information:
the knowledge components used to develop the invention; the knowl-
edge base on which the invention draws; and the subsequent knowledge
generated by the patent. We distinguish between ex-ante and ex-post
perspectives to study the characteristics of the inventions, exploiting
various patent indicators. In particular, building on Section 2, we are
interested in testing: (i) from an ex-ante perspective, whether green
technologies are more complex and more novel than non-green ones;
and (ii) from an ex-post perspective, whether green technologies have a
higher impact on future technological developments and whether this is
related to complexity and novelty. Drawing on the patent-based em-
pirical literature, we can identify six indicators to proxy for complexity,
novelty and impact.

Complexity captures the variety of knowledge bases, components
and competences required to develop the new technology and is
proxied by patent scope (Lerner, 1994; Shane, 2001) and originality
(Trajtenberg et al., 1997; Hall et al., 2001). Patent scope measures the
variety of the knowledge components and originality measures the
variety of the knowledge sources. Novelty represents the uniqueness of
the recombination processes: it captures the “distance” between the
new technology and its knowledge sources, that is, the extent to which
the new technology differs from previous technologies. It is proxied by
two main indicators: novelty in recombination (Verhoeven et al., 2016)
and radicalness, according to the index4 developed by Shane (2001)
and used by Squicciarini et al. (2013).

To investigate the impact of green inventions on subsequent patents,
we consider whether green inventions become the seeds for future
technological developments. We adopt two widely used indicators:
number of forward citations and generality index (Trajtenberg et al.,
1997; Hall et al., 2001). The former is a quantitative measure of the
number of times the invention is cited as prior art in new technological
advances and, thus, captures the spillover effect on subsequent tech-
nological developments; the latter measures the variety of technological
domains in which the invention is prior art, that is, its pervasiveness
across different technological domains.

In what follows we provide a detailed description of the indicators
used in our analysis.

3.1. Indicators to characterize ex-ante recombination processes

3.1.1. Scope
The number of a patent's distinct International Patent Classification

(IPC)5 codes proxies for the invention's technological breadth or scope
(Lerner, 1994). Research shows that, at firm level, greater patent scope
is associated to higher firm value (Lerner, 1994) and that patent scope
is a main predictor of the probability the patent will be licensed
(Shane, 2001). Patent scope is measured as the number of distinct IPC
4-digit codes to which the patent belongs (Lerner, 1994; Shane, 2001;
Squicciarini et al., 2013). Since it measures how many distinct knowl-
edge components are required for the invention, patent scope is asso-
ciated to invention complexity (Lerner, 1994).

3.1.2. Originality
The originality index developed by Trajtenberg et al. (1997) and

used widely in the literature (e.g., Hall et al., 2001, Hicks and
Hegde, 2005), measures the extent to which a patent draws on previous
inventions, dispersed across different technological fields. Exploiting
the information on backward citations, the originality index of the focal
patent captures the variety of technological domains, proxied by the
number of IPC 4-digit codes, to which the cited patents belong. The
higher the level of the patent's originality index, the greater the di-
versification of knowledge sources across technological fields. Origin-
ality is measured as:

=Originality s1i
j

n

ij
2

i

where sij is the percentage of citations made by patent i in the 4-digit
patent classes j among ni patent classes. The originality index is cal-
culated as a Herfindahl-Hirschman (HH) concentration index of patent
classes and ranges from 0 to 1. High levels of the HH index indicate that
the cited patents come from a wide variety of different technological
classes, meaning that the focal patent is the outcome of the combination
of numerous technological fields.

3.1.3. Novelty in recombination
The novelty in recombination indicator, introduced by

Verhoeven et al. (2016) and applied recently by Rizzo et al. (2018)
among others, captures the uniqueness of the knowledge recombination
process. An invention is considered novel in recombination if it re-
presents the first combination of two knowledge components. There-
fore, a patent family is novel if, among all the possible combinations of
its IPC codes, there is at least one combination not observed in a pre-
vious patent.

The indicator is calculated by comparing the pairwise IPC 8-digit
combinations of the focal patents to the whole set of pairwise IPC 8-
digit combinations in the PATSTAT (Worldwide Patent Statistical
Database) population, up to the year before the filing of the focal

3 See, among others, Griliches (1990), Lanjouw et al. (1998) and
Arts et al. (2013) for a discussion of the pros and cons of empirical analyses
based on patent data and indicators.

4 In what follows, to describe this indicator, we use the term “radicalness”, in
line with Shane (2001) and Squicciarini et al. (2013). A broad definition of a
radical invention would include the effect of the invention on subsequent
technological developments. The ex-post impact of inventions in our analysis is
discussed in Sections 3.2 and 5.

5 The hierarchical patent classification structure allows inventions to be as-
signed to broad or narrow technological fields as the number of digits increases.
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patent. The indicator takes the value 1 if the patent is novel, and 0
otherwise.

3.1.4. Radicalness
We add further insights on the novel nature of technologies, relying

on the radicalness indicator developed by Shane (2001). This reflects
whether the technology combines components in a novel way, which
“depart[s] in some deep sense from what went before” (Arthur, 2007, p.
274). Shane (2001) conceptualizes the indicator at the invention level,
to capture the knowledge distance between the focal patent's techno-
logical classes and those of its cited patents. He argues that “when a
patent cites previous patents in classes other than the ones it is in, that
pattern suggests that the invention builds upon different technical
paradigms from the one in which it is applied” (Shane, 2001, p. 210;
see, also, Rosenkopf and Nerkar 2001). Squicciarini et al. (2013) refine
the indicator, calculating it as follows:

=Radicalness
CT
n

IPC IPC;P
j

n
j

p
pj p

p

where CTj is the count of IPC 4-digit codes of patent/s j (cited by patent
p) which are not present in the focal patent p; np is the number of IPC
full-digit codes in the backward citations of the focal patent p for which
the indicator is calculated.

3.2. Indicators to characterize the ex-post impact of inventions

3.2.1. Forward citations (5 and 7 years)
The use of forward citations is probably the most commonly-used

measure of patent quality (Trajtenberg, 1990; Trajtenberg et al., 1997;
Hall and Helmers, 2013; Sorenson and Fleming, 2004). In the present
paper, we use patent citations to investigate the impact on subsequent
inventions, indicating a knowledge flow from one invention to another
and, ultimately, their spillover effects. Patent citations are used com-
monly to assess the impact of an invention as the trigger for further
inventions (e.g., Hall and Helmers, 2013). Based on
Squicciarini et al. (2013), we employ two indicators of forward cita-
tions that differ in the time intervals (5 and 7 years after the patent
publication date) the citations are observed.

3.2.2. Generality
The generality of a technology reflects “the extent to which the

follow-up technical advances are spread across different technological
fields, rather than being concentrated in just a few of them”
(Trajtenberg et al., 1997, p. 27). Hall and Trajtenberg (2004) show that
GPTs tend to have higher generality indexes than the average invention.
The generality index of a focal patent characterizes the variety of
technology fields to which the citing patents belong. We employ the
generality index operationalized by Squicciarini et al. (2013), which
follows a logic similar to that on which the originality index is based,
the main difference being the focus on forward rather than backward
citations.

The generality index is defined by Squicciarini et al. (2013) as fol-
lows:

=
= =

Generality
N

1 1
p

j

M

i

N

ji
1 1

2i

where

=
T
Tji

ji

i

where p is the focal patent. Let Yi be the citing patents of p, Ti is the total
number of IPC full-digit codes assigned to the citing patent yi; and Tji is
the total number of IPC codes that fall within each IPC 4-digit code (j)
assigned to the citing patents yi; j refers to each 4-digit IPC code. Note

that, for each 4-digit code, the share Tji/Ti captures its relevance within
the citing patents Yi. The indicator ranges from 0 to 1 and increases if a
patent is cited by subsequent inventions from a wide range of fields,
demonstrating impact on several technological domains.

4. Data and Methods

4.1. Data

Our analysis is based on two data sources. First, we rely on
PATSTAT (Autumn 2016 version) data to gather information on patents
filed at the European Patent Office (EPO) in the period 1980-2012:6

namely, patent families, citations, technological classification codes
and patent applicants’ locations. Second, the OECD Patent Quality In-
dicators database (Squicciarini et al., 2013) contains a range of patent
indicators, which we employ to proxy for the knowledge dimensions
described in Sections 2 and 3.7

Merging these two data sources, results in a dataset that provides
information on patent documents and indicators. Following standard
practice in the literature, we exploit PATSTAT to identify environment-
related patents, based on a technology classification search.
Specifically, for each patent, we obtained the list of its assigned IPC and
CPC (Cooperative Patent Classification) codes. Then, using the OECD
Env-Tech classification (2016),8 which provides a list of technological
classification codes associated to selected environment-related tech-
nologies, we define patents as green if they include at least one Env-
Tech classification code. The OECD patent classification list allows a
focus on a larger number of green technologies compared to previous
studies (e.g., Popp and Newell, 2012; Dechezleprêtre et al., 2017).
These include environmental management tools, water-related adap-
tation technologies, climate change mitigation technologies related to
transportation, buildings, environmental goods, carbon capture and
storage, and energy generation, transmission and distribution technol-
ogies.

We use patent family as the unit of analysis to deal with multiple
equivalents of the same invention (Hall and Helmers, 2013), that is,
patents issued in more than one country, which could lead to double
counting of the same patent filed at different patent offices. Although
the patents pertain to the same family, this does not guarantee identical
claim and disclosure conditions. Patent filing procedures vary across
patent offices and patent issuing authorities (Simmons, 2009).9 This
heterogeneity of information within patent families leads to slight dif-
ferences in citation patterns and technological classification codes and,
thus, in the values of the patent indicators within a family. To deal with
this issue, we follow Verhoeven et al. (2016) and take the maximum
value of each indicator within the patent family. However, we test the
stability of our results further, using the minimum value within the
patent family (see Section 5.2).

6 The EPO was established in 1977. In the first 3 years of its existence, trends
in the number of patents filed at this patent office were characterized by large
fluctuations. Hence, we decided to drop these years and focus on patents filed
after 1980.

7 Some of the indicators we use in the analysis (i.e. the “novelty in re-
combination” indicator, those adopted in Appendix A and the “overlapping
score” used in Appendix B) are built directly using raw data from PATSTAT
because they are not available in the OECD Patent Quality Indicators database
(Squicciarini et al., 2013).

8 See Haščič and Migotto (2015) for an exhaustive explanation of this clas-
sification. The updated version of the OECD Env-Tech classification employed
in this paper is available at: https://www.oecd.org/environment/consumption-
innovation/ENV-tech%20search%20strategies,%20version%20for
%20OECDstat%20(2016).pdf (last accessed November 2019).

9 E.g., the United States Patent and Trademark Office (USPTO) (but not the
EPO) has a legal requirement that applicants provide a list of citations during
the application process.
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Table 1 provides descriptive statistics of the variables employed in
the empirical analysis. We observe that 10% of the patent families in
our sample are related to environmental technologies. Note that the
number of observations used in our estimates varies depending on the
indicator considered. This variation stems from the way the indicators
are built. In particular, it is impossible to calculate originality and ra-
dicalness indicators if the focal patent does not cite any prior patents;
similarly, it is not possible to compute the generality index if the focal
patent is not cited by subsequent patents. In the case of novel re-
combination, all patents with less than two IPC 8-digit codes are ex-
cluded from the analysis since it is impossible to compute the indicator
(see Section 3).

4.2. Methodology

To investigate the differences between green and non-green inven-
tions, across different dimensions, such as complexity, novelty and
impact, we estimate the following model:

= + + + +

+ +

Pat indic Green Controls IPC dig Geo

Time

. . 4i
A

i i
A

i i

i i

0,1 0,1 0,1

0,1

where Pat indic. i
A refers to the patent indicator A, that is, scope, ori-

ginality, novelty in recombination, radicalness, forward citations and
generality. The nature of the indicator dictates the choice of estimation
method. When focusing on Originality, Radicalness and Generality, we
are dealing with censored dependent variables (i.e., by definition, their
values cannot go below 0 or exceed 1), therefore, we rely on Tobit
regressions.10 In the case of Scope and Forward Citations, these are count
indicators, thus, we rely on Poisson estimations. Finally, Novelty in
Recombination is a binary variable that assumes the value 1 if the patent
is novel, and zero otherwise. We employ a logit model for estimations
using this indicator as the dependent variable. Greeni is the main vari-
able of interest and is equal to 1 if at least one patent within the patent
family i is green, that is, if it belongs to one of technological fields
included in the OECD Env-Tech list, and 0 otherwise. IPC.4digi is a set of
IPC 4-digit dummy variables that capture the specific features of each
technological domain (see Section 4.2.1 for detailed description). Geoi
are geographical dummies to control for heterogeneous effects across
geographical areas.11 We also include time dummies, Timei, to control
for unobservable factors related to changes in patenting patterns over
time. These dummies capture whether the earliest priority year of the

patent family falls within one of three time windows: 1980-1990, 1991-
2001, 2002-2012.12 This allows us to control for unobservable hetero-
geneity which affects the patent indicators equally and varies over time
(e.g., patenting intensity, etc.). ɛi is the error term.

We also include a set of control variables. First, we control for
number of applicants which might affect the extent to which the patent
can rely on a larger pool of knowledge (Staats et al., 2012) and, con-
sequently, the complexity, novelty and impact of the invention. Second,
we employ a proxy for maturity of the technological fields to which an
invention belongs: Cumulated Number of Patents.We collect the full-digit
IPC codes assigned to each patent family in our dataset and calculate
the average cumulative number of patents associated to these codes up
to the filing year. In some cases, the choice of controls is dictated by
how the patent indicators are built. For patent indicators that rely on
information about prior knowledge, that is, originality, novelty in re-
combination and radicalness, we control for backward citations
(Hall et al., 2001). Since backward citations are considered a proxy for
invention quality (Harhoff et al., 2003), if scope, forward citations and
generality are the dependent variables, we include, as a control, the
variable for backward citations. Moreover, since the generality index
relies on citations from subsequent patents, we control for the number
of forward citations (Hall et al., 2001). Finally, for scope, novelty in
recombination and radicalness, indicators built using technological
classification codes, we control for the number of IPC full-digit codes
(e.g., Sapsalis et al., 2006).

To address the fourth research question, we implement a slightly
modified estimation, which adds indicators of complexity and/or no-
velty to the independent variables and uses the number of forward ci-
tations as the dependent variable. Table 2 presents the variables and
their descriptive statistics.

4.2.1. Controlling for technological specificities
We include technology dummies, IPC.4digi, to control for the in-

vention's technical specificities, by comparing green and non-green
patent families within narrow technological fields. This represents an
element of originality with respect to other related studies (e.g.,
Popp and Newell, 2012; Dechezleprêtre et al., 2017). The inclusion of
IPC.4digi dummies allows us to compare green and non-green inven-
tions that are expected to be similar,13 that is, that belong to the same
technological domain. Comparison between patent families relies on
the fact that patents with similar technical features are assigned to the
same IPC 4-digit code.

The comparison within narrow technological fields (e.g. Non-

Table 1
Descriptive statistics

Variable Variable description Obs Mean Std. Dev. Min Max

Green Dummy variable equal to 1 if the patent is green and 0 otherwise 1,070,795 0.1 0.299 0 1
Scope (4-digit) Number of IPC 4-digit codes 1,070,817 2.56 1.37 1 61
Originality Herfindahl–Hirschman Index of IPC codes in the cited patents (Trajtenberg et al., 1997) 1,037,627 0.707 0.219 0 0.987
Radicalness Number of IPC codes assigned to the cited patents which are not included in the citing patent

(Squicciarini et al., 2013)
1,037,795 0.366 0.273 0 1

Novelty in Recombination Dummy variable equal to 1 if the patent is novel in recombination 967,856 0.105 0.307 0 1
Forward citations (5 years) Citation count in the 5 years after patent application 1,070,817 0.643 2.31 0 655
Forward citations (7 years) Citation count in the 7 years after patent application 1,070,817 0.771 2.63 0 674
Generality Herfindahl–Hirschman Index of IPC codes in the citing patents (Trajtenberg et al., 1997) 312,127 0.332 0.282 0 0.937
Backward citations Count of backward citations 1,070,817 6.36 8.78 0 1002
Number of applicants Number of applicant - team size 1,070,817 3.32 2.23 1 100
Scope (Full-digit) Number of IPC full-digit codes 1,070,817 5.84 5.43 1 247
Cumulated number of patents Average cumulative number of patents of the patent's codes up to the filing year 1,070,781 8.74 0.992 0 12.35

10 In our sample, the originality and generality indicators never reach the
upper “theoretical” limit (i.e., 1) (see Table 1). Hence, in these two cases, in our
regressions, we impose only the left-censoring limit at 0.

11 We assign patents to geographical areas on the basis of country of origin of
the (highest share of) applicants. Geographic dummies refer to: Europe; US;
Japan; Other OECD countries; and Non-OECD countries.

12 The regression results (presented and discussed in Section 5) are stable
when we employ 5-year time window dummies.

13 Consoli et al. (2016) employ a similar empirical setting in the context of
green jobs. Our model is comparable: it uses technological classification
structures rather than occupational categories.
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metallic elements (IPC C01B), Controlling combustion engines (IPC
F02D), Organic fertilizers (IPC C05F)), increases the robustness of the
analysis. Failing to account for the idiosyncratic features of technolo-
gical domains – such as, availability of a consolidated prior art, pro-
pensity to cite or be cited by other patents, tendency to rely on a wider
range of knowledge components – could bias estimation of the true
difference between green and non-green patents. Not controlling for
technological heterogeneity could result in estimation of the coefficient
of the Green variable being driven by differences in complexity, novelty
and impact across technological fields, rather than by the real parti-
cularities of green compared to non-green patents. Note that adding
these dummies, limits the analysis to those IPC 4-digit codes that in-
clude at least one green and one non-green patent family.14

To assign IPC 4-digit codes to each patent family we rely on the
primary codes (Primary-IPC), that is, the main IPC code assigned to each
patent (Thompson and Fox-Kean, 2005; Leydesdorff et al. 2014).15

Since only the USPTO provides primary codes (‘Primary’ and ‘Sec-
ondary’ classification codes are mandatory for patent applications), we
focus on patent families with patents filed at both the European and US
patent offices. This results in the inclusion in our sample of high-quality
patents, reduces the heterogeneity arising from differences in the pa-
tenting processes across patent offices and allows us to obtain a co-
herent and homogeneous set of patent families.16 We observe that some
patent families have multiple primary codes. This is as expected since
primary codes are assigned to patents rather than patent families. To
deal with this issue we choose the most frequent IPC 4-digit code as-
signed to each patent family, in order to obtain a unique code. This
allows us to identify a unique IPC.4dig for most patent families. Some
still have multiple IPC codes with the same frequency and, in these
cases, we identify the 4-digit code of the earliest dated patent docu-
ment.17 The remaining 0.6% of patent families where we were unable

to identify unique IPC 4-digit codes, were excluded from the sample.18

5. Results

5.1. Comparing green and non-green inventions

In this section, we present the results of our empirical analysis. First,
we compare green and non-green patents without controlling for each
invention's technological specificities. We use a set of t-tests (Table 2)
for the mean difference of the continuous indicators (scope, originality,
radicalness, forward citations, generality), and a contingency table
(Table 3) for the dichotomous indicator (novelty in recombination).
Table 2 shows that green and non-green technologies are significantly
different (at the 99.99% level) along the search and impact spaces. In
particular, preliminary evidence (Tables 2 and 3), reveals that green
patents are more complex and more novel than non-green inventions,
and are characterized by a larger and more pervasive impact on sub-
sequent technological developments.

However, these results do not account for the different types of
technologies characterizing the sample. The positive difference be-
tween green and non-green patent families may be driven by a subset of
technological domains in which green compared to non-green tech-
nologies, score relatively higher for a given indicator. Fig. 1 shows the
difference between the average value for green and non-green patents
for each patent indicator and IPC 4-digit code. For the novelty in re-
combination indicator, given its binary nature, Fig. 1 depicts the dif-
ference in the proportions of novel technologies in the green and non-
green groups. We observe that green patents have higher patent in-
dicator values for most of the IPC 4-digit codes: Fig. 1 provides heuristic
evidence in line with the previous findings on the differences between
green and non-green technologies.

In the econometric analysis, we test and quantify the differences
between green and non-green technologies by controlling for techno-
logical characteristics and other factors that might influence the patent
indicators. The results in Table 4 show that the differences between
green and non-green technologies persist along all the dimensions
considered, and controlling for patent citation patterns, number of
applicants, maturity of the fields, geographical, time and technology
dummies.

First, we focus on the group of indicators measuring complexity and
novelty. The controls have the expected signs and significance. Patent
families with larger pools of applicants and larger numbers of backward
citations are more complex and more novel. Our maturity proxy -

Table 2
Statistics on patent indicators

Variable Mean Diff Std. Dev. t-test z-test
Green Non-Green Green – Non-green Green Non-Green Difference Ranksum

Scope 2.74 2.4 0.34 1.49 1.36 89.36⁎⁎⁎ 99.62⁎⁎⁎

Originality 0.719 0.672 0.047 0.203 0.238 87.91⁎⁎⁎ 75.43⁎⁎⁎

Radicalness 0.329 0.319 0.01 0.257 0.267 15.38⁎⁎⁎ 21.98⁎⁎⁎

Forward citations (5 years) 0.923 0.818 0.105 2.35 2.13 17.50⁎⁎⁎ 22.46⁎⁎⁎

Forward citations (7 years) 1.15 1.04 0.11 2.76 2.5 15.98⁎⁎⁎ 18.04⁎⁎⁎

Generality 0.374 0.352 0.022 0.28 0.281 19.56⁎⁎⁎ 19.46⁎⁎⁎

⁎⁎⁎ p < 0.01%.

14 The decision to adopt the IPC 4-digit level for the dummies is dictated by
the need to have both green and non-green patent families within the same
group. A higher digit level would result in technology dummies with only green
or non-green patent families and would not allow direct comparison. Also, to
compare green and non-green patent families within the same 4-digit code, we
need to use the IPC system because some CPC codes relate only to green
technologies (i.e., CPC Y02).

15 Verspagen (1997) points out that primary or main classification codes are
good proxies for the sector in which the knowledge is produced and that sup-
plementary codes can be considered proxies for sectors that received knowledge
spillovers.

16 To build the technology dummies we also adopted an alternative (All-IPC)
approach, which draws on Breschi et al. (2003) and assumes no differences
between primary and supplementary codes. This allowed us to retrieve the full
set of IPC 4-digit codes assigned to patent families. The results provided in the
following sections hold if we employ this alternative approach. They remain
available upon request.

17 The same approach was implemented to identify unique geographic codes
for each family. After collecting information on the geographical location of
each applicant, we identified the most frequent applicant geographical area
within each patent family. Where patent families had multiple geographical
codes with the same frequency, we assigned the patent family to the

(footnote continued)
geographical area of the earliest patent document within the family. Since
across-country co-patenting is infrequent (Hagedoorn, 2003; Belderbos et al.,
2014), the number of families not eventually assigned to a unique geographical
area was 0.78% of the sample.

18 To test whether the exclusion of patent families with multiple technology
dummies affects the results, we assigned them to each multiple code. Results
(available upon request) show that the size, sign and significance of the coef-
ficients are in line with the results in Section 5.
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Cumulated Number of Patents - is positively associated to the complexity
indicators and Radicalness. This resonates well with the fact that the
recombination is easier when there is an established experience on the
underlying technological components (Fleming and Sorenson, 2004). If
Novelty in Recombination is the dependent variable, the coefficient be-
comes negative: a larger number of prior patents reduces the prob-
ability of obtaining a novel recombination. As expected, Scope (Full-
digit) is positively and significantly associated to patent scope and no-
velty in recombination. Finally, using the radicalness indicator as the
dependent variable, the coefficient of Scope (Full-digit) is negative
which is in line with how the indicator was built (see Section 3.1.4).19

In the main analysis, we observe that green inventions are more
original and broader in scope than their non-green counterparts. In
other words, green technologies stem from a more dispersed search
space and include more distinct knowledge component branches than
their non-green counterparts. More specifically, belonging to a green
technology domain increases patent originality by 2.8% and scope of
the invention by 11.6%.20 Our results suggest that green compared to
non-green patents, draw on slightly more diversified knowledge fields
and, in particular, combine a much bigger number of technological
components.21

The other ex-ante construct investigated is novelty, which is cap-
tured by the indicators of novelty in recombination and radicalness.
The evidence points to a positive and significant association of the
Green dummy on the two indicators, suggesting that green technologies
result from newer combinations of technological components and de-
part from their knowledge sources more than non-green inventions.
Calculation of the marginal effect of Green shows that environmentally-
sound inventions are 3.4% more likely to be novel in recombination
than similar non-green patents. Similarly, although lower in magnitude,
the radicalness of green oriented inventions increases by around 1.4%.

We focus next on the characteristics of the impact space according
to the ex-post indicators described in Section 3.2, that is, number of
forward citations and generality index. Again, we find the expected
positive sign of the coefficients of our controls for number of applicants
and backward citations patterns and, when the generality indicator is
the dependent variable, also for forward citations. In line with the
findings in Haupt et al. (2007), the effect of Cumulated Number of Pa-
tents on forward citations is negative and significant. The same effect
turns positive when Generality is the dependent variable: a consolidated
knowledge on the relevant fields thus seems to drive the pervasive

impact on subsequent inventions.
In the case of green patents and their impact on future inventions,

captured by the effect on forward citations in 5 (and 7) years, our es-
timates reveal a positive and significant effect. Green patents receive
31.8% (29.4%) more citations from subsequent inventions than non-
green patents. This shows that green inventions are more likely than
their non-green counterparts to generate knowledge spillovers and be-
come the seeds for future inventions. We show, also, that green patents
have a higher impact than non-green ones on a variety of technological
domains. In particular, our estimates suggest that, on average, the
generality is 3.5% higher for green patents.

We next address the fourth research question and explore whether
the higher knowledge spillovers from green technologies (Table 4
Columns 5 and 6) are due to the ex-ante characteristics of the inven-
tions. Table 5 reports the results of the model used to estimate the effect
of Green on Forward Citations conditional on the complexity and novelty
and the covariates employed in Table 4.22 In the first four specifica-
tions, we add Scope (4-digit), Originality, Radicalness and Novelty in Re-
combination as additional independent variables. Comparing these re-
sults to the baseline model (Table 4 Column 5) we observe a lower
though still positive and significant, coefficient of Green. The magnitude
of this reduction varies according to the ex-ante indicator; controlling
for Scope (4-digit) or Novelty in Recombination leads to the highest de-
crease in the coefficient of Green.23 Column 5 controls for both com-
plexity and novelty using the indicators Scope and Novelty in Re-
combination, which reduce the effect of Green the most. We observe that
Green remains positive and significant: in particular, green technologies
receive 20% more citations than their non-green counterparts.24 Our
evidence points to an interesting pattern that partially diverges from
what suggested by Dechezleprêtre et al. (2017). The complexity and
novelty of inventions explain only a portion of the spillover potential
and the green orientation remains an important driver of knowledge
externalities, even after conditioning on these features.

This result suggests that green technologies that are also complex
and novel may exert a higher impact on subsequent inventions. To
provide empirical support, in Appendix A we investigate the combined
effect of the green orientation and the complexity (or novelty) of in-
ventions on forward citations. In Table A.1, we observe that patents
that are both green and complex (novel) have the largest impact in
terms of knowledge spillovers. This speaks in favour of policies tar-
geting green technologies that have specific ex-ante features in terms of
complexity and novelty.

5.2. Robustness checks

In this section we test the robustness of the results shown in Tables 4
and 5. First, we address the so-called “p-value problem”, which con-
cerns the inverse relationship between this measure and sample size
(Chatfield, 1995): p-values and standard errors decrease with in-
creasing sample size, leading us to question whether the significance of
the coefficients can be interpreted as a meaningful or as only a statis-
tical effect. This is particularly relevant in the case of our analysis: our

Table 3
Contingency table for the Novelty in Recombination indicator

Green Non-green

Novelty in Recombination=1 (Observed) 25,034 154,859
Ratio between Observed and Expected 1.54 0.946
Chi2 (1) 5.9e+03⁎⁎⁎

⁎⁎⁎ p <0.01%.

19 A higher number of IPC classes in the focal patent reduces the probability
of the presence of technological classes in the cited patents that are not included
in the focal patent, as measured by the radicalness indicator (see Section 3.1.4).

20 Table 4 presents the β-coefficients of our Tobit, Poisson and logit regres-
sions. To provide a quantification of the results, given the non-linear nature of
our models, Section 5.1 presents the marginal effects of Green. For the Tobit
estimates, we follow Cameron and Trivedi (2005, p. 542) and compute the
marginal effect ∂E(y|x)/∂x of Green, focusing on the partial derivative of the
conditional mean of the observed dependent variable, y.

21 The following example helps to explain the possible coexistence of high
values for scope and a more limited differences for originality. Patent
EP1354631(A2) covers a relatively large number (4) of IPC 4-digit classes, and
its backward citations are not evenly distributed across these classes, but rather
are concentrated in one of them (over 50% of the cited patents are related to
IPC B03C).

22 Table 5 presents the results for forward citations in the 5 years following
patent publication. The results are very similar if we use a time interval of 7
years. Results are available upon request.

23 We test the differences among the Green coefficients comparing Columns 1-
4 to the baseline model (Table 4 Column 5). The coefficients are statistically
different at 0.01%. Controlling for the ex-ante characteristics of the inventions
reduces the Green coefficient by 33% when controlling for Scope (4-digit), by
12% for Novelty in Recombination, by 8.3% for Originality and by 1.8% for Ra-
dicalness.

24 In an alternative specification we control for all the ex-ante indicators of
complexity and novelty simultaneously. The Green coefficient, 0.172
(p<0.01%), is similar to that reported in Table 5 Column 5 and is statistically
different from the baseline result at 0.01%.
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Fig. 1. Indicators within each IPC 4-digit code: mean differences between green and non-green patent families.
Note: Technology dummies calculated using the Primary-IPC approach. IPC 4-digit codes are listed in alphabetical order in the x-axis.
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conclusions about the statistical significance of the coefficients could be
driven by the large sample size (Lin et al., 2003). To deal with this
issue, we draw on Benjamin et al. (2018) and consider a p-value
threshold (0.01%) which is a hundred times more restrictive than the
usual 1%. Also, to reduce issues arising from the sample size, we run the
analysis on a smaller number of observations. We rerun the regressions
on the subsamples obtained from a stratified random sampling proce-
dure, to maintain representativeness in terms of share of patents per
year, technological field and share of green patents. Table 6 Panels A
and B report the results for the two subsamples, that is, 5% and 10% of
the original dataset. We observe that the sign and statistical significance
of our results hold even with these smaller representative samples. This

suggests that our findings are not driven by the relatively large sample
size, but capture truly significant and meaningful effects.

We also consider the quality of the patents included in our dataset.
As an additional robustness check, we focus on triadic patent families
(Dernis and Khan, 2004), that is, those patents filed at the three most
important patent offices: the EPO, the USPTO and the Japan Patent
Office. This allows a focus on high-quality inventions, since patent fa-
mily size is considered a good proxy for high-value invention
(Lanjouw et al. 1998; Harhoff et al. 2003). Table 6 Panel C presents the
results for the triadic patent family subsample and shows that our main
results hold.

The main results in Tables 4 and 5, are based on the methodology in

Table 4
Regression results

Complexity Novelty Impact

Scope (4-digit) Originality Novelty in
recombination

Radicalness Forward citations
(5 years)

Forward citations
(7 years)

Generality

(1) (2) (3) (4) (5) (6) (7)

Green 0.111⁎⁎⁎ 0.029⁎⁎⁎ 0.421⁎⁎⁎ 0.016⁎⁎⁎ 0.277⁎⁎⁎ 0.259⁎⁎⁎ 0.049⁎⁎⁎

(0.003) (0.001) (0.013) (0.001) (0.015) (0.014) (0.003)
Forward citations (5 years) 0.013⁎⁎⁎

(0.002)
Number of applicants 0.010⁎⁎⁎ 0.005⁎⁎⁎ 0.024⁎⁎⁎ 0.004⁎⁎⁎ 0.076⁎⁎⁎ 0.074⁎⁎⁎ 0.009⁎⁎⁎

(0.000) (0.000) (0.002) (0.000) (0.004) (0.004) (0.000)
Backward citations 0.001⁎⁎⁎ 0.004⁎⁎⁎ 0.003⁎⁎⁎ 0.003⁎⁎⁎ 0.006⁎⁎⁎ 0.005⁎⁎⁎ 0.001⁎⁎⁎

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Scope (Full-digit) 0.021⁎⁎⁎ 0.100⁎⁎⁎ -0.004⁎⁎⁎

(0.001) (0.001) (0.000)
Cumulated number of patents 0.083⁎⁎⁎ 0.025⁎⁎⁎ -0.319⁎⁎⁎ 0.030⁎⁎⁎ -0.195⁎⁎⁎ -0.217⁎⁎⁎ 0.024⁎⁎⁎

(0.001) (0.000) (0.006) (0.000) (0.005) (0.004) (0.001)
Observations 1,006,852 977,304 913,616 977,462 1,006,852 1,006,852 307,566
Regional Dummies YES YES YES YES YES YES YES
Year Dummies YES YES YES YES YES YES YES
IPC.4dig YES YES YES YES YES YES YES
F 301.43⁎⁎⁎ 174.07⁎⁎⁎ 110.61⁎⁎⁎

Chi2 277,479.32⁎⁎⁎ 52,808.80⁎⁎⁎ 44,133.69⁎⁎⁎ 40,570.99⁎⁎⁎

Notes: Technology dummies calculated using the Primary-IPC approach (Section 4.2.1). Robust standard errors in parentheses.
⁎⁎⁎ p < 0.01%

Table 5
Connecting the ex-ante characteristics to forward citations

Forward citations (5 years)

(1) (2) (3) (4) (5)

Green 0.185⁎⁎⁎ 0.254⁎⁎⁎ 0.242⁎⁎⁎ 0.272⁎⁎⁎ 0.180⁎⁎⁎

(0.005) (0.005) (0.005) (0.005) (0.005)
Number of applicants 0.071⁎⁎⁎ 0.074⁎⁎⁎ 0.073⁎⁎⁎ 0.076⁎⁎⁎ 0.070⁎⁎⁎

(0.000) (0.000) (0.000) (0.000) (0.000)
Backward citations 0.005⁎⁎⁎ 0.005⁎⁎⁎ 0.006⁎⁎⁎ 0.006⁎⁎⁎ 0.005⁎⁎⁎

(0.000) (0.000) (0.000) (0.000) (0.000)
Cumulated number of patents -0.221⁎⁎⁎ -0.211⁎⁎⁎ -0.208⁎⁎⁎ -0.196⁎⁎⁎ -0.234⁎⁎⁎

(0.002) (0.002) (0.002) (0.002) (0.002)
Scope (4-digit) 0.117⁎⁎⁎ 0.108⁎⁎⁎

(0.000) (0.001)
Originality 0.706⁎⁎⁎

(0.007)
Novelty in recombination 0.331⁎⁎⁎ 0.127⁎⁎⁎

(0.004) (0.004)
Radicalness 0.094⁎⁎⁎

(0.005)
Observations 1,006,852 977,304 977,462 913,624 913,624
Regional Dummies YES YES YES YES YES
Year Dummies YES YES YES YES YES
IPC.4dig YES YES YES YES YES
Chi2 327,020.67⁎⁎⁎ 297,369.86⁎⁎⁎ 286,811.06⁎⁎⁎ 286,646.89⁎⁎⁎ 311,263.45⁎⁎⁎

Notes: Technology dummies calculated using the Primary-IPC approach (Section 4.2.1). Robust standard errors in parentheses.
⁎⁎⁎ p< 0.01%
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Verhoeven et al. (2016), which takes the maximum value of the patent
indicators within each patent family (our unit of analysis). To check
whether our results are robust to this choice, Table 6 Panel D presents
the results obtained using the minimum values of the indicators within
each patent family. With one exception, the significance and sign of the
key coefficient Green are confirmed. The exception is novelty in re-
combination, which shows high heterogeneity in value within patent
families.25 The coefficient of Green is small and non-significant, but
positive. This seems to be related to the dichotomous nature of the
indicator: if just one of the patent documents has a value zero then the
whole family is not novel in recombination. If we take the minimum
value within a patent family, the number of inventions that are based
on novel recombination drops from 10.5% to 0.9%.

We conducted two further robustness checks. The first addresses an
issue that could affect the indicators for diversification of technological
classes, that is, originality and generality. These indicators assume
constant cognitive proximity between the IPC codes of the backward
(forward) citations. In Appendix B we relax this assumption and con-
sider that some technological domains may be more similar than others.
This might affect the implications of our findings (Table 4) since di-
versification of knowledge sources and future impacts may be char-
acterized by a variety of similar rather than cognitively distant tech-
nological domains. To control for relatedness of the technological
domains, we account for the cognitive distance of the technological
fields that characterize backward or forward citations, by relying on
measures of unrelated and related variety (Frenken et al., 2007). The
results in Appendix Table B.1 support and complement the insights on

the originality and generality of green patents, for which unrelated
variety prevails in both backward and forward citations. Appendix
Table B.1 shows that green patents result from the combination of di-
verse, largely unrelated knowledge sources and affect technologies that
are mostly separated by a large knowledge distance.

The second issue concerns the fact that most of our patent indicators
rely on IPC classifications. For instance, technological classification
codes may be affected by subjective assignments by patent applicants
and examiners. This could bias the results if IPC classification practices
differ systematically between green and non-green technologies. In
Appendix C, we discuss and provide empirical evidence of the robust-
ness of our main findings, relying on alternative ways to capture our
main constructs – that is, complexity, novelty and impact – that do not
employ technological classification codes.

6. Discussion and conclusions

In this paper, we focused on green technologies to assess whether
they differ from their non-green counterparts. Using patent data and a
set of established patent indicators (see, e.g., Squicciarini et al., 2013;
Verhoeven et al., 2016), we linked the invention search and impact
spaces. The search space was investigated adopting an ex-ante per-
spective, capturing the knowledge recombination processes leading to
an invention. The impact space was explored using an ex-post approach
to assess the impacts of inventive activities on subsequent technological
developments, focusing, especially, on the spillover potential of green
technologies.

Our first set of findings provides a test of whether the processes
leading to the generation of inventions differ between green and non-
green domains. Our evidence suggests that the knowledge recombina-
tion process involved in the development of green technologies is more
complex and more novel. Overall, our results for ex-ante recombination
of knowledge produce three main insights. First, green technologies

Table 6
Robustness checks

Complexity Novelty Impact

Scope (4-digit) Originality Novelty in
recombination

Radicalness Forward citations
(5 years)

Forward citations
(7 years)

Generality

(1) (2) (3) (4) (5) (6) (7)

Panel A: Smaller sample size (5%)
Green 0.105⁎⁎⁎ 0.028⁎⁎⁎ 0.343⁎⁎⁎ 0.016⁎⁎ 0.178⁎⁎ 0.227⁎⁎ 0.049⁎⁎

(0.008) (0.003) (0.062) (0.006) (0.049) (0.059) (0.014)
Observations 38,236 36,934 35,291 36,963 35,416 35,436 9,198
F 27.18⁎⁎⁎ 16.30⁎⁎⁎ 16.43⁎⁎⁎

Chi2 10,713.87⁎⁎⁎ 2,128.24⁎⁎⁎ 6,400.79⁎⁎⁎ 7,472.12⁎⁎⁎

Panel B: Smaller sample size (10%)
Green 0.113⁎⁎⁎ 0.026⁎⁎⁎ 0.427⁎⁎⁎ 0.020⁎⁎⁎ 0.209⁎⁎⁎ 0.170⁎⁎⁎ 0.055⁎⁎⁎

(0.006) (0.002) (0.041) (0.004) (0.039) (0.038) (0.009)
Observations 89,896 86,998 81,563 86,989 82,060 81,756 24,188
F 54.00⁎⁎⁎ 29.22⁎⁎⁎ 22.26⁎⁎⁎

Chi2 25,538.75⁎⁎⁎ 4,886.43⁎⁎⁎ 22,016.99⁎⁎⁎ 15,615.20⁎⁎⁎

Panel C: Triadic patents only
Green 0.112⁎⁎⁎ 0.027⁎⁎⁎ 0.464⁎⁎⁎ 0.014⁎⁎⁎ 0.161⁎⁎⁎ 0.156⁎⁎⁎ 0.044⁎⁎⁎

(0.003) (0.001) (0.016) (0.002) (0.019) (0.018) (0.003)
Observations 590,211 575,615 552,651 575,700 552,653 552,653 198,608
F 210.32⁎⁎⁎ 116.35⁎⁎⁎ 89.94⁎⁎⁎

Chi2 179,606.38⁎⁎⁎ 36,062.44⁎⁎⁎ 35,533.30⁎⁎⁎ 29,378.50⁎⁎⁎

Panel D: Minimum indicator values
Green 0.038⁎⁎⁎ 0.024⁎⁎⁎ 0.036 0.004⁎⁎⁎ 0.225⁎⁎⁎ 0.207⁎⁎⁎ 0.039⁎⁎⁎

(0.007) (0.001) (0.044) (0.001) (0.010) (0.010) (0.003)
Observations 1,006,852 977,304 909,686 977,462 913,624 913,624 307,566
F 286.50⁎⁎⁎ 186.25⁎⁎⁎ 99.33⁎⁎⁎

Chi2 101,275.77⁎⁎⁎ 7,367.96⁎⁎⁎ 34,782.77⁎⁎⁎ 42,014.96⁎⁎⁎

Notes: All regressions include time, geographical dummies and controls as shown in the previous tables. Technology dummies calculated using the Primary-IPC
approach (Section 4.2.1). Robust standard errors in parentheses.

⁎⁎ p<1%
⁎⁎⁎ p< 0.01%

25 If we use the All-IPC approach to calculate the technology dummies, with
the radicalness indicator as the dependent variable the coefficient of Green is
negative and close to zero, which highlights an almost negligible difference
between green and non-green technologies.
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combine a higher number of technological components than their non-
green counterparts. Second, green patents rely on more diverse
knowledge for their generation, compared to their non-green patent
counterparts. Third, green inventions appear to be based on unique
combinations of knowledge, which are different from prior knowledge
bases.

Our results confirm the distinctiveness of the green knowledge base,
highlighted in prior firm-level studies (e.g., Cainelli et al., 2015;
Ghisetti et al., 2015): handling the additional complexity and novelty is
not straightforward and requires difficult knowledge-sourcing efforts,
involving open innovation modes and external knowledge providers
(e.g., De Marchi, 2012; Ghisetti et al., 2015; Marzucchi and
Montresor, 2017). However, it is important to stress two issues, which
suggest caution in making a direct link between our results and the
available firm-level evidence which is based mainly on survey data.
First, as already mentioned, we focused on the process of knowledge
recombination at the basis of the inventive activity that generates new
technologies. It might be that, “downstream” phases, including adop-
tion of technologies or the economic exploitation of environmental
innovations, add complexity and require radically new competences.
Second, compared to the firm-level evidence in the literature, we do not
directly consider firms’ knowledge-sourcing activities dictated by dif-
ferences between their internal competences and those required to in-
crease their environmental innovation performance. As a result, our
findings cannot be translated directly into firm-level implications for
knowledge sourcing strategies. This would require consideration of
firms’ actual capacities to identify and assimilate (and exploit) knowl-
edge from the external environment, that is, their absorptive capacity
(Cohen and Levinthal, 1989; Zahara and George, 2002). This is beyond
the scope of the analysis in this paper, but should be addressed in future
research: not considering firms’ idiosyncratic capacity to access the pool
of patented knowledge “underestimates” the firms’ problems and re-
actions related to technological complexity and novelty.

A second set of results relates to the impact of green technologies on
future technological developments. Focusing on the whole spectrum of
green technologies, we found that green technologies are characterized
by a higher number of forward citations and greater generality. Our
findings show that, in addition to being characterized by larger spil-
lovers to subsequent developments, green inventions also affect a
higher variety of technological domains. In other words, green inven-
tions are characterized by higher impact and pervasiveness, a major
trait of GPTs. As such, green technologies open opportunities for
technological developments in different sectors and their economic and
environmental impact rests on the technological complementarities
within application fields (Bresnahan and Trajtenberg, 1995;
Cantner and Vannuccini, 2017).

The paper sheds light on the sources of the higher knowledge spil-
lovers from green technologies, scrutinizing whether these are due to
the ex-ante characteristics of the inventions. We controlled for com-
plexity and novelty at the invention level and compared similar green
and non-green patents. Our results unveil an interesting pattern.
Complexity and novelty – mainly technological breadth and novelty in
recombination – contribute only partially to explaining why the spil-
lovers are greater from green compared to non-green patents. Our
evidence shows that the green orientation of an invention remains an
important driver of the impact on subsequent technological develop-
ments.

These findings lead to technology policy implications. While sup-
porting green technologies may take away resources from other pro-
ductive sectors, the larger potential for knowledge spillovers represents
a justification for the implementation of green R&D subsidies. Based on
our results, this justification holds for the whole green technological

spectrum and remains valid if we control for other invention char-
acteristics which might affect their spillovers potential. However, the
role of ex-ante characteristics in explaining the spillover effect speaks in
favour of public interventions targeting in particular green technologies
that are complex and novel. In addition to these insights on the tar-
geting of the policy interventions, our analysis provides suggestions on
the design of the support. Given the different knowledge components to
be combined and the novel nature of the knowledge combinations,
green technology policy could favour boundary spanning, cross fertili-
zation and radical exploration (Rosenkpof and Nerkar, 2001).

Finally, the traits shared by green inventions with GPTs call for
actions to support the development of downstream technological ap-
plications. This would increase the economic and environmental re-
turns from green technology advances. Direct policy interventions
could ease coordination problems and realign the incentives of actors in
distant sectors and technologies (Bresnahan and Trajtenberg, 1995).
Given the uncertainty surrounding the green technological develop-
ment trajectory (Rodrik, 2014), excessive selection of application could
lead to inefficient outcomes if this reduces the variety of the alter-
natives (Metcalfe, 1994).

This work suggests directions for further research. We focused on a
specific phase in the innovation process: invention generation. It is
important to ascertain whether the adoption and exploitation of green
technologies at the firm level represents similar complex and radical
changes. Future work could investigate why green technologies gen-
erate larger knowledge externalities. For instance, given the early stage
of green technologies, future research could directly scrutinize whether
the limited availability of technological alternatives and the larger
opportunity for technological improvements could affect the prob-
ability to generate more spillovers. Another avenue of future in-
vestigation could focus on whether green technologies are adopted in
more firms than their non-green counterparts. A widespread adoption
could translate into more technologies that build upon existing green
inventions but deviate from them to adapt to specific industrial needs.
Finally, our analysis is confined to domain of technology; it could be
extended by an assessment of whether (and which) green technologies
provide increasing (environmental and) economic returns to scale,
which is an important characteristic of GPTs (Hall and
Trajtenberg, 2004).
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Appendix A. . The combined spillover effect of the green orientation of an invention and its complexity or novelty

To investigate further the combined effect of the green orientation of a technology and its complexity or novelty, we look at the spillover
potential of four exclusive invention categories: green and complex (or novel), non-green and complex (or novel), green and non-complex (or non-
novel), neither green nor complex (nor novel). We exploit the dichotomous nature of the Novelty in Recombination indicator to identify novel and non-
novel patents, whereas for complexity we consider an invention to be complex if Scope is higher than the indicator median.26

In Table A.1, we observe that patents that are both green and complex (novel) have the largest impact in terms of knowledge spillovers. The null
hypothesis of equality between marginal effects computed using the coefficients of Table A.1 is rejected at 0.01%. It is worth noting that: the
marginal effect of Green & Complex (Novel) is statistically larger than that of Non-Green & Complex (Novel); the marginal effect of Green & Non-
Complex (Non-Novel) is statistically larger higher than that of Non-Green & Non-Complex (Non-Novel). This supports the results reported in Table 5:
conditional on complexity (novelty) green inventions have more knowledge externalities.

Appendix B. . Relatedness between technological classification codes

The originality and generality indexes focus, essentially, on the variety of IPC codes of the cited and citing patents: the higher the variety of
backward (forward) citations across IPC codes, the higher will be the originality (generality) indicator (see Section 3). These indicators assume that
all technological classification codes are equally distant in the cognitive space which implies, for example, that the distance between technological
classification code “Compounds of silver” (IPC C01G 5) and “Compounds of gold” (IPC C01G 7) – which are in the same 4-digit technological class –
is the same as the distance between “Compounds of silver” (IPC C01G 5) and “Mechanical removal of impurities from animal fibres” (IPC D01B 3),
which belong to a different 1-digit technological class.

In this Appendix, we relax this assumption and account for the cognitive distance between technology citations fields. Specifically, we are
interested in whether cited and citing patents are scattered across distant technological domains or are clustered in close proximity. We rely on the
concept of relatedness, which is defined as common knowledge bases and principles characterizing the technological domain (Breschi et al. 2003).
To operationalize this construct, we employ an entropy measure and calculate diversification of forward and backward citations across technological
domains (Grupp, 1990; Frenken et al. 2007). We decompose the entropy indicator into: (i) unrelated variety (between technological domains di-
versification), which is the entropy of the IPC 4-digit distribution of backward (forward) citations; (ii) related variety (within technological domains
diversification), which is the weighted sum of the entropy at the IPC 8-digit level within each IPC 4-digit code characterizing backward (forward)
citations.

We follow previous work employing the entropy indicator to measure related and unrelated variety (see Frenken et al., 2007; Castaldi et al.,
2015; Wixe and Andersson, 2017) by letting each IPC 8-digit code fall into a separate IPC 4-digit code, Sg, where = …g G1, , . The IPC 4-digit code
shares, Pg, of backward (forward) citations can be obtained by summing the 8-digit shares pi:

=P pg
i S

i
g

Table A.1
Combining the green orientation of patents and their complexity (novelty)

Forward citations (5 years) Forward citations (7 years) Forward citations (5 years) Forward citations (7 years)

Green & Complex 0.656⁎⁎⁎ 0.638⁎⁎⁎

(0.018) (0.017)
Non- Green & Complex 0.446⁎⁎⁎ 0.444⁎⁎⁎

(0.007) (0.007)
Green & Non-Complex 0.277⁎⁎⁎ 0.254⁎⁎⁎

(0.013) (0.013)
Green & Novel 0.550⁎⁎⁎ 0.528⁎⁎⁎

(0.036) (0.033)
Non- Green & Novel 0.338⁎⁎⁎ 0.322⁎⁎⁎

(0.014) (0.013)
Green & Non-Novel 0.253⁎⁎⁎ 0.233⁎⁎⁎

(0.012) (0.012)
Number of applicants 0.072⁎⁎⁎ 0.070⁎⁎⁎ 0.074⁎⁎⁎ 0.071⁎⁎⁎

(0.004) (0.003) (0.004) (0.003)
Backward citations 0.006⁎⁎⁎ 0.005⁎⁎⁎ 0.006⁎⁎⁎ 0.005⁎⁎⁎

(0.000) (0.000) (0.000) (0.000)
Cumulated number of patents -0.232⁎⁎⁎ -0.254⁎⁎⁎ -0.207⁎⁎⁎ -0.231⁎⁎⁎

(0.005) (0.004) (0.005) (0.005)
Observations 1,006,852 1,006,852 913,624 913,624
Regional Dummies YES YES YES YES
Year Dummies YES YES YES YES
IPC.4dig YES YES YES YES
Chi2 48,517.9⁎⁎⁎ 47,181.4⁎⁎⁎ 39,260.4⁎⁎⁎ 37,953.8⁎⁎⁎

Notes: Technology dummies calculated using the Primary-IPC approach (Section 4.2.1). Non-green and Non-Complex (Novel) is the reference category in Column 1
and 2 (3 and 4). Robust standard errors in parentheses.

⁎⁎⁎ p< 0.01%

26 In a set of unreported regressions we consider inventions as complex if the Scope indicator is higher than 75th percentile. This does not affect the results.
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Unrelated variety is measured as follows:

=
=

UV P log 1
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while related variety is computed as:

=
=

RV P H
g 1

G

g g

where:

=H
p
P

log 1
p /Pg

i S

i

g
2

i gg

Having calculated related and unrelated variety based on the technological classification codes of backward and forward citations, we run our
analysis of the differences between green and non-green patents. Table B.1 presents the results based on Tobit regressions. We observe that green
patents are characterized by higher diversification in both knowledge sources (backward citations) and impact on subsequent technologies (forward
citations) across unrelated technological domains. That is, the variety between the technological domains of backward and forward citations is higher
for green than for non-green patents. In terms of related variety, the coefficient of Green is positive although, for backward citations, it is not
significantly different from zero. Focusing on backward citations, unrelated variety clearly dominates related variety. In terms of forward citations,
the findings are similar based on the magnitude of the coefficients of Green. Overall, these results suggest that green patents result from the
combination of diverse knowledge sources, which are largely unrelated, and affect technologies located at a considerable knowledge distance from
each other.

Appendix C. . Patent indicators not relying on technological classification codes

Our analysis builds on patent indicators that rely heavily on technology classification codes. The use of IPC codes may be biased by an “indexer
effect” (Healey et al., 1986), which derives from the assignment of codes to patents (Joo and Kim, 2010). Accordingly, the patenting process may be
biased by systematic inclusion (exclusion) of IPC codes, depending on the type of invention under investigation. Although Joo and Kim (2010, p.
438) stress that patent classification data are “partly controlled by the strict guidelines and systematic process of IPC assignment”, if the assignment
of IPC codes differs between green and non-green patents, our findings may be capturing this practice instead of the real difference between these
two groups of inventions.

There are methodological reasons to believe that our analysis is free from this issue. As highlighted in Section 4.2.1, IPC 4-digit technology
dummies enable us to take account of the idiosyncratic features that characterize rather narrow technological domains. A narrow technological
domain makes it difficult to expect the patent examiner/applicant to adopt a systematically different approach to the assignment of IPC codes to
green and non-green patents. Moreover, OECD Env-Tech classification (2016) makes use of IPC and CPC codes. The latter has a specific section (CPC
Y02) for environmentally-sound technologies, while IPC codes do not include ad-hoc classes for green technologies. Using CPC codes to build patent
indicators would bias our results because only green patents can be assigned to green CPC codes. For instance, in the case of the scope indicator,
green patents, by definition, would belong to at least one more technological field (i.e. CPC Y02) than non-green patents. We avoid this problem by
relying only on IPC codes when computing our indicators.

Table B.1
Ex-ante and ex-post diversification allowing for relatedness between technological fields

Backward citations Forward citations

Unrelated variety Related variety Unrelated variety Related variety
(1) (2) (3) (4)

Green 0.122⁎⁎⁎ 0.003 0.165⁎⁎⁎ 0.022⁎⁎⁎

(0.003) (0.002) (0.008) (0.004)
Number of applicants 0.009⁎⁎⁎ 0.015⁎⁎⁎ 0.060⁎⁎⁎ 0.028⁎⁎⁎

(0.001) (0.000) (0.001) (0.001)
Backward citations 0.042⁎⁎⁎ 0.014⁎⁎⁎ 0.004⁎⁎⁎ 0.001⁎⁎⁎

(0.001) (0.000) (0.000) (0.000)
Forward citations (5 years) 0.107⁎⁎⁎ 0.034⁎⁎⁎

(0.011) (0.003)
Cumulated number of patents -0.023⁎⁎⁎ 0.016⁎⁎⁎ -0.077⁎⁎⁎ -0.020⁎⁎⁎

(0.001) (0.001) (0.003) (0.002)
Observations 977,853 977,853 534,248 534,248
Regional Dummies YES YES YES YES
Year Dummies YES YES YES YES
IPC.4dig YES YES YES YES
F 290.07⁎⁎⁎ 240.84⁎⁎⁎ 81.31⁎⁎⁎ 109.42⁎⁎⁎

Notes: Tobit regression with technology dummies calculated using the Primary-IPC approach (Section 4.2.1). Robust standard errors in parentheses.
⁎⁎⁎ p< 0.01%
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Nevertheless, we test empirically if technological classification codes affect our analysis by building patent indicators that do not rely on IPC
codes and treating them as proxies for the dimensions identified in the literature, i.e. complexity, novelty and impact.27

We use the number of claims as a robustness check for complexity. The rationale for this choice is that the content of claims defines the
technological breadth of the invention and delimits the boundaries of the invention's legal protection (Squicciarini et al., 2013).

As for novelty, we built an indicator inspired by Dahlin and Behrens (2005), who calculate an overlapping score of backward citations between
cohorts of patents defined on a yearly base. We use a novelty measure that captures the extent to which patents differ from previous inventions in
terms of recombination of knowledge sources. It is expected that novel patents bring about new combinations of backward citations. We compute an
overlapping score between patent i and j as follow:

=os
i j
i j

[ ]
[ ]ij

c c

c c

where ic and jc are the set of patents cited by patent i and j, respectively. The numerator captures the common backward citations between patent i
and j whereas the denominator measures the set of patents that either patent i or j cite. The overlapping score osij ranges from 0 (no overlap) to 1
when the two patents i and j have the same backward citation structure. Hence, lower values of the os are associated with higher novelty. We
calculate the indicator for all the patents included in our sample by comparing each focal patent with previous patents filed at t 1, t 2, t 3 and
t 4. Then we average these overlapping scores in order to obtain a single value.

The results of the regressions shown in Table C.1 highlight that green patents are more complex and novel than non-green ones. These results are
complemented by the findings from the main analysis (Tables 4, 5 and 6) which show that the number of forward citations is higher for green than
for non-green patents.
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Table C.1
Regression results using patent indicators not relying on IPC codes

Complexity Novelty
Claims OS
(1) (2)

Green 0.013⁎⁎⁎ -0.008⁎⁎

(0.003) (0.003)
Number of applicants 0.019⁎⁎⁎ -0.008⁎⁎⁎

(0.001) (0.001)
Backward citations 0.002⁎⁎⁎ 0.034⁎⁎⁎

(0.000) (0.001)
Scope (Full-digit) 0.013⁎⁎⁎ -0.004⁎⁎⁎

(0.000) (0.000)
Cumulated number of patents -0.014⁎⁎⁎ 0.045⁎⁎⁎

(0.001) (0.001)
Observations 830,363 940,287
Regional Dummies YES YES
Year Dummies YES YES
IPC.4dig YES YES
Chi2 90,358.27⁎⁎⁎

F 190.20⁎⁎⁎

Notes: Dependent variable Claims: Poisson regression. Dependent variable OS: Tobit regression. Both
models include technology dummies calculated with the Primary-IPC approach (Section 4.2.1). Robust
standard errors in parentheses.

⁎⁎ p<1%
⁎⁎⁎ p< 0.01%

27 As far as the impact dimension is concerned, our main results (Tables 4, 5 and 6) already include patent indicators that do not rely on technological classification
codes, i.e., number of forward citations in the 5 and 7 years following the year of the invention.
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